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The novel mononuclear PPh4-fac-[FeIII{HB(pz)3}(CN)3]‚H2O (1)
[PPh4

+) tetraphenylphosphonium cation; (HB(pz)3)- ) hydrotris-
(1-pyrazolyl)borate] and tetranuclear fac-{[FeIII{HB(pz)3}(CN)2(µ-
CN)]3FeIII(H2O)3}‚6H2O (2) have been prepared and characterized
by X-ray diffraction analysis. Crystal data for compound 1:
monoclinic, space group P21/c, a ) 9.575(3) Å, b ) 21.984(4) Å,
c ) 16.863(3) Å, â ) 100.34(2)°, U ) 3486(1) Å3, Z ) 4. Crystal
data for compound 2: orthorhombic, space group Pnam, a )
14.084(3) Å, b ) 14.799(4) Å, c ) 25.725(5) Å, U ) 5362(2) Å3,
Z ) 4. Compound 1 is a low-spin iron(III) compound with three
cyanide ligands in fac arrangement and a tridentate pyrazolylborate
ligand building a distorted octahedral environment around the iron
atom. Compound 2 is the first example of a molecular species
containing three peripheral low-spin iron(III) ions linked to a central
high-spin iron(III) cation by single cyanide bridges, the anion of 1
acting as a monodentate ligand in 2. Variable-temperature magnetic
susceptibility measurements of 2 reveal the occurrence of a
significant ferromagnetic coupling between the three peripheral low-
spin iron(III) centers and the central high-spin iron(III) ion cations
leading to a low-lying nonet spin state.

Some exciting results were obtained recently in the old
family of Prussian blue analogues: the achievement of
molecule-based magnets with critical temperatures (Tc’s) as
high as 3762,3 and photoinduced magnetization.4,5 These
three-dimensional compounds are easily obtained as powder
samples by reaction of the hexacyanometalate unit [B(CN)6]q-

with the totally hydrated metal ions [A(H2O)6]p+ (A and B
are transition metal ions). Their exciting photomagnetic
properties and the usefulness of lower nuclearity models to
interpret their properties prompted experimental chemists to

look for different synthetic strategies by modifying the
bonding ability of Lewis acid A or/and Lewis base B.6-12

Three recent examples based on the modification of the B
unit are the following: (i) the 14-metal [(Me3tacn)8Cr8Ni6-
(CN)24]12+ and 19-metal [(Me3tacn)10Cr10Ni9(CN)42]6+ as-
semblies (Me3tacn ) N,N′,N′′-trimethyl-1,4,7-triazacyclo-
nonane) obtained by using the neutralfac-[Cr(Me3tacn)3-
(CN)3] complex as cyanide precursor;10a (ii) the cyclic
tetranuclear complex [FeIII

2(bipy)4(CN)4CuII
2(bipy)2]6+ (bipy

) 2,2′-bipyridine) which exhibits a quintet spin ground state,
where the B unit is the dicyano low-spin iron(III) complex
[Fe(bipy)2(CN)2]+;11 (iii) the trinuclear complexestrans-
[{FeIII (bipy)(CN)4}2MII(H2O)4]‚4H2O and the double zigzag
chains [{FeIII (phen)(CN)4}2MII(H2O)2]‚4H2O (M ) Mn and
Zn; phen ) 1,10-phenanthroline) with antiferromagnetic
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coupling between Fe(III) and Mn(II), where the B unit is
the tetracyano low-spin iron(IIII) complex [Fe(L)(CN)4]- (L
) bipy and phen).12

In our efforts to design novel cyanometalate precursors,
we prepared the mononuclear complex PPh4-fac-[Fe{HB-
(pz)3}(CN)3]‚H2O (1) [PPh4

+) tetraphenylphosphonium
cation; [HB(pz)3)- ) hydrotris(1-pyrazolyl)borate] and the
tetranuclear compoundfac-{[FeIII{HB(pz)3}(CN)2(µ-CN)]3FeIII-
(H2O)3}‚6H2O (2) obtained by reaction between the anion
of 1 and [Fe(H2O)6]3+ in water.13 Both compounds were
characterized by IR spectroscopy, variable-temperature mag-
netic measurements,14 and X-ray structural analysis.15

The crystal structure of1 consists offac-[Fe{HB(pz)3}-
(CN)3]- anions (see Figure 1), uncoordinated tetraphen-
ylphosphonium cations, and crystallization water molecules.
The iron atom has a slightly distorted octahedral coordination
geometry, its symmetry being close toC3V. The distances
between the iron and the nitrogens of the pyrazolylborate
ligand vary in the range 1.970(4)-1.987(4) Å, considerably
shorter than those found in the high-spin iron(III) complex
{Fe[HB(pz)3]Cl3}- [2.152(4)-2.175(5) Å]19 and close to
those reported for the low-spin iron(II) compound{Fe[HB-
(pz)3]2} (1.96-1.98 Å).20 Good agreement is observed be-
tween the Fe(1)-C(cyano) bond distances of1 [1.910(6)-
1.929(7) Å] and those reported for other cyano-containing
mononuclear low-spin iron(III) [1.87(2)-1.95(1) Å]12,21and
iron(II) [1.891(5)-1.936(5) Å]22 complexes. The presence
of the tetraphenylphosphonium cation in the structure of1,
the value of the magnetic moment at room temperature (µeff

ca. 2.4µB), and the cyanide stretching frequency [ca. 2123s

cm-1 in 1 versus 2118s and 2120s cm-1 for the low-spin
iron(III) complexes PPh4[Fe(L)(CN)4]‚nH2O with L ) bipy
(n ) 1) and phen (n ) 2)]12 unambiguously reveal a low-
spin iron(III) species. The PPh4

+ cations are grouped by pairs
exhibiting the edge-to-face interaction pattern with a P‚‚‚P
separation of 6.575(3) Å23 (see Figure S1 in the Supporting
Information). The anions are linked through hydrogen bonds
involving the uncoordinated water molecule [O(1)] and two
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Figure 1. Perspective view of the anion of1 showing the atom numbering
(thermal ellipsoids for 30% probability). Hydrogen atoms are omitted.
Selected bond lengths [Å] and angles [deg]: Fe(1)-C(1), 1.910(6);
Fe(1)-C(2), 1.929(7); Fe(1)-C(3), 1.917(5); Fe(1)-N(4), 1.970(4);
Fe(1)-N(5), 1.987(4); Fe(1)-N(6), 1.984(4); C(1)-Fe(1)-C(2), 86.7(3);
C(1)-Fe(1)-N(4), 91.7(2); C(1)-Fe(1)-N(6), 179.3(2); C(1)-Fe(1)-C(3),
87.1(2); C(1)-Fe(1)-N(5), 92.8(2); C(2)-Fe(1)-N(6), 92.6(2); C(2)-
Fe(1)-N(4), 178.2(2); C(2)-Fe(1)-C(3), 90.9(2); C(2)-Fe(1)-N(5),
91.8(2); N(4)-Fe(1)-N(6), 89.0(2); N(4)-Fe(1)-C(3), 90.0(2); N(4)-
Fe(1)-N(5), 87.3(2); N(6)-Fe(1)-C(3), 93.1(2); N(6)-Fe(1)-N(5),
86.9(2); C(3)-Fe(1)-N(5), 177.3(2).
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of the three cyanide nitrogens [N(2) and N(3] [2.886(8) and
2.990(7) Å for O(1)‚‚‚N(2)′ and O(1)‚‚‚N(3), respectively;
(′) ) 1 - x, y, z], building a chain of hydrogen bonds which
runs parallel to thea axis (see Figure S2).

The structure of complex2 is made up of neutralfac-
{[FeIII{HB(pz)3}(CN)2(µ-CN)]3FeIII (H2O)3} tetranuclear units
(see Figure 2) and crystallization water molecules which are
linked through an extensive network of hydrogen bonds
involving the coordinated and uncoordinated water molecules
[O‚‚‚O distances varying in the range 2.623(24)-2.633(12)
Å] and two nitrogen atoms [N(30) and N(300)] of the
terminally bound cyanide ligands [N‚‚‚O ) 2.633(12) and
2.750(14) Å]. The anion of1 is also present in2, but
here, it acts as a monodentate ligand through one of its
three cyanide groups toward afac-triaquairon(III) entity
affording an original tetranuclear compound where three low-
spin iron(III) motifs are bound to a central six-coordinated
high-spin iron(III) (see the magnetic properties described
here). The Fe-C-N angles for both terminal [174.1(5)-
178.3(6)° in 1 and 175.4(11)-178.5(12)° in 2] and
bridging [171.6(9)° and 177.7(13)° in 2] cyanide groups
are somewhat bent. The iron-iron distances through
the single cyano bridges are 5.047(3) Å [Fe(1)‚‚‚Fe(2)]
and 5.012(2) Å [Fe(1)‚‚‚Fe(3)], values which are shorter
than the shortest intermolecular metal-metal separation,
7.434(2) Å [Fe(1)‚‚‚Fe(3a); (a)) -1/2 + x, 1/2 - y, z].

The temperature dependence oføMT, where øM is the
magnetic susceptibility per four iron(III) ions, in the tem-
perature range 225-1.9 K is shown in Figure 3. At room
temperature,øMT is 6.83 cm3 mol-1 K, which is somewhat
higher than that expected for a high-spin (S) 5/2) and three
low-spin (S ) 1/2) iron(III) ions magnetically isolated. It
continuously increases on cooling and reaches a maximum
value of 9.40 cm3 mol-1 K at 14 K (slightly weaker than
the value expected for anS ) 4 spin state,øMT ) 10 cm3

mol-1 K with g ) 2.0) and further decreases to 6.70 cm3

mol-1 K at 1.9 K. This curve is in agreement with a
significant ferromagnetic coupling between the central spin
sextuplet and peripheral spin doublets to give a low-lyingS
) 4 spin state. The ferromagnetic nature of this interaction
and the nonet ground spin state is evidenced by the
magnetization curve at 1.9 K (see inset of Figure 3) which
exhibits a saturation value of ca. 8µB at the maximum
available magnetic field. Intermolecular interactions and/or
zero-field splitting (D) in theS ) 4 state could account for
the decrease oføMT in the lower temperature region.
Alternating current susceptibility measurements, carried out
on 2, in the temperature range 2-10 K do not show the
frequency dependence expected for a single-molecule magnet
behavior. To evidence such a behavior, if present (D < 0
and large enough), lower temperature measurements would
be necessary. The large first-order spin-orbit contribution
present in the low-spin iron(III) ion (2T2g ground term)
precludes the analysis of the magnetic properties of2 through
a simple spin Hamiltonian expression. The ferromagnetic
interaction in2 can be understood by taking into account
the electronic configuration of the iron and the symmetry of
the singly occupied (magnetic) orbitals. The interaction
between t2g

3eg
2 (high-spin iron(III)) and t2g

5eg
0 (low-spin

iron(III)) implies one t2g orbital on the low-spin iron(III)
which gives rise to two t2g-eg ferromagnetic pathways arising
from the orthogonality of the orbitals and three t2g-t2g

antiferromagnetic pathways associated with theπ overlap
of the orbitals. Among the three antiferromagnetic pathways,
only one is operative [along the Fe(1)-NC-Fe(low-spin)
bridges] with an efficiency reduced by the bending of the
Fe-NC-Fe bridge. The two ferromagnetic contributions,
with an important overlap density on the N(2) and N(3)
atoms, can therefore overcome the antiferromagnetic ones.
In summary, mononuclear compound1 is a new suitable
building block which allows the preparation of novel discrete
high-spin molecules such as2 and opens wide perspectives
in the design of magnetic heterometallic assemblies.
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Figure 2. Perspective view of the tetranuclear unit of2 showing the atom
numbering. Selected bond lengths [Å] and angles [deg]: Fe(1)-O(1), 1.99-
(1); Fe(1)-O(2), 2.030(8); Fe(1)-N(2), 2.02(1); Fe(1)-N(3), 2.049(8);
O(1)-Fe(1)-O(2), 88.7(3); O(1)-Fe(1)-N(2), 173.9(5); O(1)-Fe(1)-
N(3), 91.2(3); O(2)-Fe(1)-O(2)′, 89.4(4); O(2)-Fe(1)-N(3)′, 88.1(3);
O(2)-Fe(1)-N(3), 177.4(3); O(2)-Fe(1)-N(2), 87.0(3); N(3)-Fe(1)-
N(3)′, 94.5(5); N(2)-Fe(1)-N(3), 92.9(3); Fe(1)-N(2)-C(2), 173.3(12);
Fe(1)-N(3)-C(3), 164.2(8); Fe(2)-C(2)-N(2), 177.7(13); Fe(3)-C(3)-
N(3), 171.6(9) [symmetry code: (′) ) x, y, 3/2 - z].

Figure 3. Temperature dependence of theøMT product for2. The inset
shows the field dependence of the magnetization of2 at T ) 1.9 K [(4, O)
experimental data; (__) eye-guide lines].
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